Practical on Artificial Neural Networks
نویسنده
چکیده
Neural networks, more accurately called Artificial Neural Networks (ANNs), are computational models that consist of a number of simple processing units that communicate by sending signals to one another over a large number of weighted connections. They were originally developed from the inspiration of human brains. In human brains, a biological neuron collects signals from other neurons through a host of fine structures called dendrites. The neuron sends out spikes of electrical activity through a long, thin stand known as an axon, which splits into thousands of branches. At the end of each branch, a structure called a synapse converts the activity from the axon into electrical effects that inhibit or excite activity in the connected neurons. When a neuron receives excitatory input that is sufficiently large compared with its inhibitory input, it sends a spike of electrical activity down its axon. Learning occurs by changing the effectiveness of the synapses so that the influence of one neuron on another changes. Like human brains, neural networks also consist of processing units (artificial neurons) and connections (weights) between them. The processing units transport incoming information on their outgoing connections to other units. The "electrical" information is simulated with specific values stored in those weights that make these networks have the capacity to learn, memorize, and create relationships amongst data. A very important feature of these networks is their adaptive nature where "learning by example" replaces "programming" in solving problems. This feature makes such computational models very appealing in application domains where one has little or incomplete understanding of the problem to be solved but where training data is readily available. These networks are “neural” in the sense that they may have been inspired by neuroscience but not necessarily because they are faithful models of biological neural or cognitive phenomena. ANNs have powerful pattern classification and pattern recognition capabilities through learning and generalize from experience. ANNs are non-linear data driven self adaptive approach as opposed to the traditional model based methods. They are powerful tools for modelling, especially when the underlying data relationship is unknown. ANNs can identify and learn correlated patterns between input data sets and corresponding target values. After training, ANNs can be used to predict the outcome of new independent input data. ANNs imitate the learning process of the human brain and can process problems involving non-linear and complex data even if the data are imprecise and noisy. These techniques are being successfully applied across an extraordinary range of problem domains, in areas as diverse as finance, medicine, engineering, geology, physics, biology and agriculture. There are many different types of neural networks. Some of the most traditional applications include classification, noise reduction and prediction.
منابع مشابه
Modeling and Optimization of Roll-bonding Parameters for Bond Strength of Ti/Cu/Ti Clad Composites by Artificial Neural Networks and Genetic Algorithm
This paper deals with modeling and optimization of the roll-bonding process of Ti/Cu/Ti composite for determination of the best roll-bonding parameters leading to the maximum Ti/Cu bond strength by combination of neural network and genetic algorithm. An artificial neural network (ANN) program has been proposed to determine the effect of practical parameters, i.e., rolling temperature, reduction...
متن کاملThe Prediction of Surface Tension of Ternary Mixtures at Different Temperatures Using Artificial Neural Networks
In this work, artificial neural network (ANN) has been employed to propose a practical model for predicting the surface tension of multi-component mixtures. In order to develop a reliable model based on the ANN, a comprehensive experimental data set including 15 ternary liquid mixtures at different temperatures was employed. These systems consist of 777 data points generally containing hydrocar...
متن کاملArtificial Neural Networks Analysis Used to Evaluate the Molecular Interactions between Selected Drugs and Human Cyclooxygenase2 Receptor
Objective(s): A fast and reliable evaluation of the binding energy from a single conformation of a molecular complex is an important practical task. Artificial neural networks (ANNs) are strong tools for predicting nonlinear functions which are used in this paper to predict binding energy. We proposed a structure that obtains binding energy using physicochemical molecular descripti...
متن کاملOptimization of micro hardness of nanostructure Cu-Cr-Zr alloys prepared by the mechanical alloying using artificial neural networks and genetic algorithm
Cu–Cr-Zr alloys had wide applications in engineering applications such as electrical and welding industrial especially for their high strength, high electrical as well as acceptable thermal conductivities and melting points. It was possible to prepare the nano-structure of these age hardenable alloys using mechanical alloying method as a cheap and mass production technique to prepare the non-eq...
متن کاملHYBRID ARTIFICIAL NEURAL NETWORKS BASED ON ACO-RPROP FOR GENERATING MULTIPLE SPECTRUM-COMPATIBLE ARTIFICIAL EARTHQUAKE RECORDS FOR SPECIFIED SITE GEOLOGY
The main objective of this paper is to use ant optimized neural networks to generate artificial earthquake records. In this regard, training accelerograms selected according to the site geology of recorder station and Wavelet Packet Transform (WPT) used to decompose these records. Then Artificial Neural Networks (ANN) optimized with Ant Colony Optimization and resilient Backpropagation algorith...
متن کاملOn the convergence speed of artificial neural networks in the solving of linear systems
Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. This paper is a scrutiny on the application of diverse learning methods in speed of convergence in neural networks. For this aim, first we introduce a perceptron method based on artificial neural networks which has been applied for solving a non-singula...
متن کامل